Parallel scalability of a FETI–DP mortar method for problems with discontinuous coefficients
نویسندگان
چکیده
We consider elliptic problems with discontinuous coefficients discretized by FEM on non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI–DP method using a preconditioner with special scaling described in Dokeva, Dryja and Proskurowski [to appear]. Experiments performed on hundreds of processors show that this FETI–DP mortar method exhibits good parallel scalability.
منابع مشابه
A FETI-DP Method for the Mortar Discretization of Elliptic Problems with Discontinuous Coefficients
Second order elliptic problems with discontinuous coefficients are considered. The problem is discretized by the finite element method on geometrically conforming non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI-DP method. We prove that the method is convergent and its rate of convergence is almost optimal and indepe...
متن کاملA Feti-dp Algorithm for Elasticity Problems with Mortar Discretization on Geometrically Non-conforming Partitions
Abstract. In this paper, a FETI-DP formulation for three dimensional elasticity on non-matching grids over geometrically non-conforming subdomain partitions is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on the subdomain interfaces (faces). A FETI-DP algorithm is then built by enforcing the mortar matching condition in dual and primal ...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملA FETI-DP Preconditioner with A Special Scaling for Mortar Discretization of Elliptic Problems with Discontinuous Coefficients
We consider two-dimensional elliptic problems with discontinuous coefficients discretized by the finite element method on geometrically conforming nonmatching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a dual-primal FETI method. In this paper we introduce and analyze a preconditioner with a special scaling of coefficients and step...
متن کاملA FETI-DP Formulation of Three Dimensional Elasticity Problems with Mortar Discretization
Abstract. In this paper, a FETI-DP formulation for the three dimensional elasticity problem on non-matching grids over a geometrically conforming subdomain partition is considered. To resolve the nonconformity of the finite elements, a mortar matching condition on the subdomain interfaces (faces) is imposed. By introducing Lagrange multipliers for the mortar matching constraints, the resulting ...
متن کامل